Numerical Simulation of Nanoscale Double-gate Mosfets
نویسندگان
چکیده
ABSTRACT The further improvement of nanoscale electron devices requires support by numerical simulations within the design process. After a briefly description of our 2D/3D-device simulator SIMBA, the results of the simulation of DG-MOSFETs are represented. Starting from a basic structure with a gate length of 30 nm, a calibration of model parameters was done based on measured values from literature. Afterwards a variation of gate length, channel thickness and doping, gate oxide parameters and source/drain doping was carried out in connection with the numerical calculation of device characteristics. Thereafter an optimization of a DG-MOSFET with a gate length of 15 nm was done. The optimized structure shows suppressed short channel behavior and short switching times of about 0.15 ps.
منابع مشابه
Compact, Physics-Based Modeling of Nanoscale Limits of Double-Gate MOSFETs
Compact, physics-based models of subthreshold swing and threshold voltage are presented for double-gate (DG) MOSFETs in symmetric, asymmetric, and ground-plane modes. Applying these device models, threshold voltage variations in DG MOSFETs are comprehensively and exhaustively investigated using a unique, scale-length based methodology. Quantum mechanical effects and fringeinduced barrier loweri...
متن کاملIntrinsic Fluctuations in Sub 10-nm Double-Gate MOSFETs Introduced by Discreteness of Charge and Matter
We study, using numerical simulation, the intrinsic parameter fluctuations in sub 10 nm gate length double gate MOSFETs introduced by discreteness of charge and atomicity of matter. The employed “atomistic” drift-diffusion simulation approach includes quantum corrections based on the density gradient formalism. The quantum confinement and source-to-drain tunnelling effects are carefully calibra...
متن کاملAn approach based on particle swarm computation to study the nanoscale DG MOSFET-based circuits
The analytical modeling of nanoscale Double-Gate MOSFETs (DG) requires generally several necessary simplifying assumptions to lead to compact expressions of current-voltage characteristics for nanoscale CMOS circuits design. Further, progress in the development, design and optimization of nanoscale devices necessarily require new theory and modeling tools in order to improve the accuracy and th...
متن کاملCompact Model for Multiple-Gate SOI MOSFETs
In this work we present compact modelling schemes, for the undoped nanoscale multiple-gate MOSFET, suitable for design and projection of these devices. The proposed models have a physical basis and assume well-tempered multiple-gate MOSFETs; i.e., transistors with small shortchannel effects. We have considered different transport models (drift-diffusion and quasi-ballistic models); each one is ...
متن کاملHigh-frequency compact analytical noise model for double-gate metal-oxide-semiconductor field-effect transistor
Silicon-on-insulator SOI metal-oxide-semiconductor field-effect transistors MOSFETs are excellent candidates to become an alternative to conventional bulk technologies. The most promising SOI devices for the nanoscale range are based on multiple gate structures such as double-gate DG MOSFETs. These devices could be used for high-frequency applications due to the significant increase in the tran...
متن کامل